

Self Organizing Maps on the GPU

Mark Kim
University of Utah

Scientific Computing and Imaging Institute
Los Alamos National Laboratory

Summer 2009

Organization

● What's a SOM?
● How's it used?
● Creating a SOM
● CUDA
● Future Works

Self-Organizing Map

● Purpose
● Make high dimensional data manageable

– Neucleotide frequency count
– 4^4 = 256 vector size

● AAAA, AAAT, AAAC, AAAG, AATA, AATT, AATC, AATG...

● visualize the characteristics in data
– M x N x Vector size --(reduce)--> M x N

● 150 x 350 x 256 reduces to a 150 x 350 image

SOM (cont.)

● Unsupervised learning
● Depending on the literature, neural network
● Produces 2D images from multi-dimensional

data
● While keeping the characteristics of the data intact

How a SOM is Used

● Characterize unknown data with known data
● Similar to using a neural network
● Color different data groups, run through SOM
● Run unknown data, see where it lands in the SOM.

SOM (cont)

● 9 eukaryotic genomes
● Vector size 256 (4^4) (only used 16 for images)
● 40 iterations

Building a SOM, briefly

● Initialize the weight map with PCA
● For T iterations

● For every vector in our data set
– Find the “closest” weight vector
– Adjust the weight vector plus its neightbors

?

Initial Weight Map

● Random or Principle Component Analysis?
● Random may require more iterations

– But should get you there anyways
● PCA could create poor starting point

– Vectors skewed via abnormally large portions of the data
– Normalize count should take care of that

● I used PCA to create the initial weight vectors

Principal Component Analysis

● Is there another basis that reveals hidden
structure in the data?
● If we constrain this other basis to a linear

combination of the original basis of the data, then
yes

● We can use the covariance of the dataset
● Then run PCA on the covariance

PCA (cont)

● Figure out the covariance and solve using SVD
– Get new eigenvectors (we need the first two)

● Intialize Weight Map
●

● Where b1 and b2 are eigenvectors of the first and
second principal components, and sigma is the
standard deviation.

● Xav is the mean of the dataset
● I,J are the weight map sizes

wij=xav
5∗sigma1

I
∗[b1∗i−I /2b2∗ j−J /2]

Distance Measure

● Given an M x N weight vector map and a data
vector
● How do you determine “close”

● As always, it depends on your data
● I used || ||X k−W ij

2

Update Weight Map

● Where alpha is a learning coefficient
● After every iteration, alpha is updated
● alpha(r) = max(0.01, alpha(1)*(1- r/T)

– Where alpha(1) is the initial value of alpha, and T is the
total number of iterations

● r is the iteration number

w ij
new=w ijalpha r ∗

∑xk
N ij

−w ij

Update Weight Map (cont)

● Use a window
● Use beta to control the size
● After each iteration beta is updated

– Beta(r) = max(0, Beta(1) – r)
– Where Beta(1) is the initial value of beta

Other Useful Information

● Density

CUDA?

● PCA is host side (C++), SOM is CUDA
● Difficulties

● Memory constraints in general
● Memory constraints using SGEMM

– Weight map width * weight map height * size of data
– 64 x 64 x ~10,000 = ~3.6GB of RAM

● Reduction required using SGEMV
● Rolling my own matrix multiplier

Future works

● stuff that needs to be finished soon.
● Finish writing a CUDA PCA
● Do some speed measurements

● Big picture
● Adapt it for detecting “fracture”

– Canny Edge Detection

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

