Summer 2008

Mark Kim

Summer 2008 (cont.)

- SCOUT
 - Volume Renderer
 - Lyman-alpha visualization
- Particle Mesh N-Body Simulation

N-Body Simulation

- Motivation
 - study the evolution of star clusters
 - study dark matter
 - tool to test theory against observation
 - Millenium Simulation

N-Body Simulation (cont.)

- Isn't there already an CUDA N-Body simulator?
- And isn't it cool?
 - Limitations exist

Lyland et al, GPU Gems 3

Particle Mesh N-Body Simulation

Gauss' Law

$$\nabla g = -4\pi * \rho$$

But we know...

$$-g = -\nabla \Phi$$

Thus...

$$-\nabla^2\Phi=4*\pi*\rho$$

- Poisson's equation
- easily solved in the frequency domain

PM N-Body Simulation

- 1.Assign particles to mesh
- 2. Fourier Transform on density mesh
- 3. Calculate potential using poisson's eq.
- 4. Inverse Fourier to solve for Φ
- 5. Calculate the next position of each particle

PM N-Body Sim (cont)

- Speedup?
 - $N_g \log N_g$ where N_g is the grid size
 - instead of N^2 (where N^2 is the number of particles)
- Drawbacks?
 - short-range interaction is not good
 - Particle-Particle Particle Mesh

PM N-Body Sim (cont.)

- Quad Core 2.4 Ghz ~2 sec (TBB)
- GeForce 8800 GTS ~0.3 sec (CUDA)
 - CUDA implementation unoptimized

Questions?